How to prove Ramanujan's q-Continued Fractions

The photograph of a page in Ramanujan's Lost Notebook where he expanded a ratio of two series in terms of three continued fractions. These three are among the continued fractions explained in this paper.

Its the 125th year of Ramanujan's birth, but how many of his formulas do you know? Here is an opportunity to get familiar with 9 of Ramanujan's continued fraction formulas. These include the three continued fractions that appear in the Lost Notebook in the above photograph. 

Abstract:
By using Euler's approach of using Euclid's algorithm to expand a power series into a continued fraction, we show how to derive Ramanujan's $q$-continued fractions in a systematic manner.

A Preprint of this expository paper is now available from arXiv. The latest version fixes a typo. The final version appears in this book. You may wish to buy/access the entire volume from the AMS, its really an amazing piece of work.

Update (Sept 7, 2018): I presented this topic in IISER, Mohali, after adding a few ideas from the recent joint work with Mourad Ismail. Here is the presentation.

Update (December 20, 2014): Published in Contemporary Mathematics: Ramanujan 125, K. Alladi, F. Garvan, A. J. Yee (eds.)  627, 49-68 (2014)

Update (July 17, 2013): Accepted for publication in the proceedings of Ramanujan 125, where I presented this paper.




How to discover 22/7 and other rational approximations to $\pi$


A short article written for a magazine that caters to high-school students. The basic idea is to use continued fractions found using Euclid's algorithm, and then to chop off the continued fraction to get rational approximations. Written at a high-school level. Some of the material was already present in my book Maths Concepts.

Update: March 2014. This article is published in "At Right Angles." Here is a link to the published article.