Friday, November 15, 2002

Experience Mathematics # 20 -- The sum of angles in a triangle

Euclidean or plane geometry begins with notions of points and lines, and the notion that a point lies on a line. Think of lines as sets, and a point as an element belonging to a set. Points and lines satisfy certain axioms. In Euclidean Geometry (or plane geometry), the axioms are based on Euclid’s original axioms. From these axioms, we can use the rules of logic to derive theorems (or propositions) that can be regarded as truthful statements that apply to the plane. Here a plane is a model, or a mini-universe where those axioms and theorems hold.

For example, consider the theorem: The sum of angles in a triangle is $180$ degrees. The various terms in this theorem (angle, triangle etc.) are constructs in the plane that we wish to study. The theorem itself is a property that will hold in our mini-universe. The proof should proceed from the axioms, use the definitions of the various constructs, and follow the rules of logic.

Even though the theorem is true, it does not imply that the sum all triangles is $180$ degrees. For example, consider the surface of the earth. Draw a triangle with a right angle at the North Pole. Suppose the two sides of this angle go down to the equator, and the third side of the triangle is the equator. The sum of angles of this triangle—made on the surface of the earth—is $270$ degrees!

In fact, in this non-euclidean geometry, the sum of angles in a triangle is always greater that $180$ degrees.

Can you find a surface where a sum of angles in a triangle is always less than $180$ degrees?

No comments: