## Wednesday, August 03, 2011

### Precalculus by Askey and Wu

Many years back, Professor Richard Askey sent me hard copies of some notes he had made, with a supplement by  H. Wu. I think these notes are just wonderful, and am placing them here.

Review of Pre-Calculus by Richard Askey and H. Wu
Precalculus - Further Notes by Richard Askey

## Wednesday, April 27, 2011

### Punya - A nearly Palindromic poem

Punya
~

Love
everything
the poetry,
ambigrammed symmetry.
An inspiration-
Hope you keep up with
the perspiration:
programmed asymmetry,
Ambi-poettary,
anything
but palindromes!
love

~
GB

~~
This was inspired by a blog post by Punya, about an 8th grader who loved his palindromic poetry. The associated facebook page attracted some comments admiring Punya, including a little palindromic poem by me.

While I am not an 8th grader anymore, I do feel many times that I am still in 12th grade.
So, I thought of a
nearly-palindromic poem.

So near a palindromic poem, yet far from it. The first of its kind. Enjoy. Or not.

## Monday, April 25, 2011

### Identities and Mathematical Intuition: Talk in DPS - Dwarka to DPS Math Teachers

On April 18th, I gave a talk on Identities to Delhi Public School (DPS) Math teachers  attending a training conference/workshop. The teachers were from DPSs all over the country and teach in senior school (XIth-XIIth).

The overall idea of the talk was to organize information about identities according to the three kinds of mathematical intuition I have spoken about earlier. The three kinds of mathematical intuition are: Symbolic, graphical or physical intuition, and structural intuition. These are motivated by the following quote:
…some mathematicians are more endowed with the talent of making pictures, others with that of juggling symbols and yet others with the ability of picking a flaw in an argument.
~Gian Carlo Rota

## Tuesday, March 08, 2011

### Sunil Mittal

A schoolboy, named Sunil Mittal,
What goes through

Here's a clue:

The movies playing in his brain
and the color of his uniform,
are both the same.

They are Blue!

Sunil is a friend from modern school. This one came up on FB as a comment on a discussion.

## Wednesday, February 09, 2011

### In Praise of an Elementary Identity of Euler

After many years, a new math paper. Its mostly a survey of my favorite identities, but has some new identities too. The new results have been checked (as typeset in the paper) using Maxima.  I have tried to write the first few sections so that  anyone can read and appreciate it.
I would appreciate any comments, typos, etc.

Update (March 16, 2011):
Presentation from: Georgia Southern q-Series conference, March 15. Here is a link.

Update (June 11, 2011): The paper is published by the Electronic J. of Combinatorics, Vol 18 (2), P13 44 pp. Download.

Keywords:
Telescoping, Fibonacci Numbers,  Pell Numbers, Derangements, Hypergeometric Series, Fibonacci Polynomials,  q-Fibonacci Numbers,  q-Pell numbers, Basic Hypergeometric Series, q-series, Binomial Theorem, q-Binomial Theorem, Chu--Vandermonde sum, q-Chu--Vandermonde sum, Pfaff--Saalschutz sum, q-Pfaff--Saalschutz sum, q-Dougall summation, very-well-poised 6 phi 5 sum, Generalized Hypergeometric Series, WZ Method

## Sunday, February 06, 2011

### My Mathematical Forefathers

From time to time, I look at the Mathematics Genealogy Project, and search for my own mathematical tree. I was happy to note that I am a direct descendant of Gauss and of Leibnitz. What I noticed today, was that I am a mathematical cousin of Saroj Malik, my teacher in Hindu College, who taught me abstract algebra and elementary number theory. We branch out at Gauss.

Here is the complete list of my mathematical forefathers.

• Friedrich Leibnitz
• Jakob Thomasius
• Otto Mencke
• Johann Christoph Wichmannshausen
• Christian August Hausen
• Abraham Gotthelf Kästner
• Johann Friedrich Pfaff
• Carl Friedrich Gauß
• Christoph Gudermann
• Karl Theodor Wilhelm Weierstraß
• Leo Königsberger
• Georg Alexander Pick
• Charles Loewner
• Adriano Mario Garsia
• Stephen Carl Milne
• Gaurav Bhatnagar

## Monday, August 02, 2010

### Math Problem Book - Grade 6

Here is a book made from some problem sets I used to give Tejasi and her friends in my garage. The explanations have been added later on. Most of the kids who took these problem sets benefited...in the sense that they began doing well in exams. Here is a collection of the problem sets for grade 6.

## Sunday, August 01, 2010

### Experience Mathematics

A book I wrote long ago. Recently, I re-edited it based on comments made by Professor Dick Askey. Looking for a publisher, but meanwhile here it is for my friends and their kids...

Click here to view the PDF File

## Friday, June 04, 2010

### The q-disease

Special Functions,
by Andrews, Askey and Roy.
Here's a belated review,
and a thank you.

~*~*~*~*~*~

Beauty in mathematics,
said Polya,
is seeing the truth
without effort.

Everything
in The Book
is as elegant,
as could be.

Everything
as simple,
as effortless,
as should be.

Everything
as beautiful,
as it is.

~*~*~*~*~*~

## Thursday, May 14, 2009

### Design II

Design II
Ambigram by punyamishra

A great design:
Everything fits in nicely
into one complete whole.

Not a hair out of place,
and not one thing
more
than what is
needed.

The form
and the function,
made for each other.

GB #32

## Sunday, April 05, 2009

Ambigram by punyamishra

All Cretans are liars
said Epiminedes,
a Cretan,

If Epiminedes tells the truth
then he must be lying.
And if he is lying,
he is telling the truth.

## Saturday, April 04, 2009

### Watson-Crick

Watson-Crick
Ambigram by punyamishra

Watson and Crick
show
what fun it is
to be
a scientist.

What fun it is
to discover
something new.

What fun it is
to compete
with the best
and win.

Watson and Crick
discovered
the secret of life
itself.
GB #30

## Friday, February 27, 2009

### Internet

Internet
Ambigram by punyamishra

The Internet
inking pacts
across the world.

and connecting
all humanity.

Shakily
connecting
all the dots
into one
continuous whole.

GB #29

### Internet II

Internet II
Ambigram by punyamishra

Small knots
woven together
become a net.
Flexible, stable,
and very strong.

Small computers
inter-connected
become the Net.

Unleashing
the power
of communication,
of creativity,
and
of community.

Small individuals,
become the
Internet.

GB #28

## Friday, February 20, 2009

### Douglas R Hofstadter

Sides-reversed-is
Ambigram by punyamishra