Tuesday, May 09, 2017

WP Bailey Lemmas (Elliptic, multivariable)

After many many years, Michael Schlosser and I wrote another joint paper. We first collaborated in 1995-96 when both of us were Ph.D. students or shortly thereafter. Our joint work was part of his thesis, and published in Constructive Approximation. This time around, I was his post-doc in Vienna from Feb 1, 2016 to Feb 28, 2017.


The picture was taken in Strobl, a favorite place for small meetings and conferences for Krattenthaler's group in the University of Vienna.

In this paper, we give multivariable extensions (over root systems) of the elliptic well-poised (WP) Bailey Transform and Lemma. In the classical (i.e. dimension = 1) case, this work was done by Spiridonov, who in turn extended the work of Andrews and Bailey. It is Andrews' exposition which we found very useful while finding generalizations. We used  previous $q$-Dougall summations due to Rosengren, and Rosengren and Schlosser, and found a few of our own along with some new elliptic Bailey $_{10}\phi_9$ transformation formulas, extending some fundamental formulas given in the classical case by Frenkel and Turaev in 1997. Along the way, we discovered a nice trick to generalize the theorem of my advisor, Steve Milne, that  I had named "Fundamental Theorem of $U(n)$ series" in my thesis.

Hopefully, there will be many more collaborative ventures in the near future.

Here is a link to the paper: Elliptic well-poised Bailey transforms and lemmas on root systems, preprint.

No comments: